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Abstract

Finite element analyses of the aerothermoelastic behavior of aerothermally buckled cylindrical composite shells with

various damping treatments were implemented using the theory of layerwise displacement field. The arc-length method and

iterative nonlinear scheme were taken up to estimate the post-buckling deformation of composite shells due to aerothermal

loads. The complex modulus was adopted to take into account the effects of viscoelastic damping. The post-buckling

behaviors and aeroelastic characteristics, under thermal loads, of several damped composite shells were investigated with

various damping treatments including free layer and constrained layer and sandwiched damping layers. The results show

that the flutter boundary of the cylindrical composite panels with viscoelastic layers can be remarkably affected by the

aerothermally buckled shapes and damping treatments. Further, the proper damping treatments, coupled with thermal

loads, can improve aerothermoelastic characteristics, resulting in the increase of the flutter boundary.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Generally, the exteriors of vehicles with supersonic speeds become exposed to severe aerodynamic loads as
well as environmental temperatures. In a special case, a self-excited oscillation of the external skin can often
occur when the velocity increases up to a certain point called the panel flutter speed. Panel flutter is known as a
critical, multidisciplinary problem because it is induced by interactions among thermal loads, aerodynamic
forces, and elastic restoring forces. Further, it is accompanied with failures or cracks of structures. Adequate
understanding of panel flutter is a key prerequisite for the design of high-speed vehicle structures such as
launch vehicles, supersonic fighters, and military missiles. Hence, numerous studies of the precise estimation
and improvement of the flutter boundary have been undertaken by many researchers. Dowell [1,2] provided a
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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Nomenclature

fi body forces
M mass matrix
q out-of-balance vector
Qij elastic modulus
Q̄ij reduced elastic modulus ðQ̄ ¼ RT QRÞ

DTcr critical buckling temperature
u unknown displacement DOF vector
uj ; vj in-plane displacement at the jth interface
w transverse displacement

b aerodynamic pressure parameter
g curvature term of Hans Kurmhaar’s

piston theory
Z loss factor
H thermal buckling mode
m aerodynamic damping parameter
r density of structures
ra density of airflow
sij Cauchy stress tensor
c̄k shape function
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comprehensive review of the mathematical and physical mechanism of panel flutter. Librescu [3] reported
pioneering work into the supersonic flutter of shell structures.

Yang and Han [4] developed a simple, finite element method for estimating the panel flutter boundary of a
panel that has buckled due to aerodynamic heat. Sawyer [5] obtained the approximate flutter and buckling
points of anisotropic laminated plates; he reported that bending-extensional coupling and bending-twisting
stiffness destabilizes buckling and flutter characteristics in thin plates. Using Galerkin’s method and
an arc-length continuation, Chandiramani et al. [6] analyzed the nonlinear dynamic behavior of a buckled
composite panel that is subjected to an aerodynamic load which is caused by a high-supersonic flow. By
considering nonlinear aerodynamics, they also demonstrated the possibility of hard flutter for such
panels. Through a numerical simulation, Wang and Quek [7] found that embedded piezoelectric layers might
increase the flutter and buckling capacities of a simply supported beam. Using the finite element method,
Lee et al. [8] analyzed thermal post-buckling and aerodynamic-thermal load of cylindrical laminated panels;
they suggested that the post-buckling and flutter stabilities might be enhanced by the adoption of shape-
memory alloys. Park et al. [9] undertook numerical analyses of composite plates using the first-order shear
deformation theory; they showed that the shape-memory alloy could impede the post-buckling deflection.
Elfelsoufi and Azrar [10] derived the integral-equation formulation, and investigated the buckling, flutter,
and vibration characteristics of beams with variable sections. Seresta et al. [11] conducted parametric studies
on the stacking sequences of a flat composite laminate for optimizing the flutter and thermal-buckling
behaviors.

Johns and Parks [12] reported that a hysteretic structural damper, which is generally used for dissipating the
vibration of a system, destabilized the flutter characteristics of structures. On the contrary, Ellen [13] used
spatial derivative arguments to point out that structural damping could stabilize the flutter boundaries of
systems. These incompatible results entailed various studies of the relationship between structural damping
and flutter characteristics. Oyibo [14] suggested viscous models for both structural and aerodynamic damping,
and indicated the dual nature of viscous-damping stabilization or destabilization. Koo and Hwang [15]
reported the relationships among structural damping, fiber orientations, and flutter boundary of composite
plates. Krause and Dinkler [16] investigated the influence of curvature and damping on flutter behavior.
Bismarck-Nasr and Bones [17] studied the damping effects on the panel flutter boundary for thin cylindrical
shells. Using a linear finite element approach, Singha and Ganapathi [18] undertook parametric studies of the
supersonic flutter behavior of laminated plates in relation to aerodynamic and structural damping as well as
thermal loads.

Numerous studies were conducted to improve the flutter boundaries of high-speed vehicles by the use of
smart materials. However, the literature survey revealed that the flutter characteristics of shell structures with
viscoelastic damping layers had not been investigated considering aerothermally large deformation. This paper
first reports an investigation of the nonlinear flutter characteristics, under extreme thermal and aerodynamic
conditions, of shell structures with various damping treatments. The layerwise theory was applied in the
formulation of the finite element method, and a modified piston supersonic aerodynamic theory [19] was used
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to calculate the aerodynamic forces on the surface of the shell structure. Additionally, the complex modulus
[20] was adopted to consider the effects of structural damping of the structures.

2. Finite element formulations

2.1. Layerwise displacement field

As shown in Fig. 1, the global in-plane displacement fields (u and v) can be represented in the r� j� z

coordinates by the summation of the local in-plane displacement (uj and vj) of each laminated interface on the
cylindrical coordinate. The transverse deformation of each layer is assumed to be same, so called partial
layerwise theory. By introducing the piecewise-linear interpolation function, FjðrÞ, the layerwise description of
the displacements is given as follows:

ðu; v;wÞ ¼
Xni

j¼1

ujðj; z; tÞFjðrÞ;
Xni

j¼1

vjðj; z; tÞFjðrÞ;wðj; zÞ

 !
(1)

In Eq. (1), ui and vi are, respectively, the axial and hoop displacements at the jth interface, and ni is the number
of laminated layers for each finite element. To save computational time and memory storage through a
reduction of ni, the concept of the sub-lamina of multi-layered structures was applied with a proper thickness-
discretization. In previous work [21], the interpolation function and the sub-lamina method has been
elucidated well. The interpolation function of FjðrÞ with respect to r� j� z coordinate system is the same to
FJ ðzÞ with respect to z� j� x coordinate system in Ref. [21]. In the nonlinear strain-displacement
relationships, von Kàrmàn’s approximation was used for the description of large deformations.
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2.2. Constitutive and governing equations

For considering the effects of structural damping on the dynamics of the shell structures with viscoelastic
layers, the complex modulus, which consists of the stiffness and the loss factor, is adopted. The complex
modulus can be expressed in the following form:

Ēij ¼ Eijð1þ iZijÞ for i; j ¼ 1; 2; 3 (3)
ϕ-coordinate

r - coordinate

z - coordinater θ

ui

vi

wi

a

h

Fig. 1. Global and local coordinates of the cylindrical laminate.
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In Eq. (3), the imaginary part of the complex modulus refers to the effect of structural damping. With respect
to the material coordinates, the unified linear constitutive equations that relate sinusoidal stresses and strains
for the jth lamina of the shell laminates, can be written as

rj ¼ Qjej � ajDT (4)

To consider the ply angle, y, of the jth lamina of the shell laminate, the modified constitutive equation, with
respect to the transformed coordinates, can be written as

rj ¼ Q̄jej � ājDT (5)

Through the assumption of zero transverse normal stress, the reduced constitutive equation can be represented
as follows:

~rj ¼ ~Qj ~ej � ~ajDT (6)

In Eq. (6), the subscript j indicates the layer-number, and ~Qj and ~aj are, respectively, the reduced complex
stiffness matrix (5� 5) and the coefficients of the thermal-expansion vector (5� 1). The detailed terms of the
stiffness matrix and thermal-expansion vector were well-described in earlier studies [22,23].

Hamilton’s principle can be applied to derive the governing equations for the damped composite shells in
which viscoelastic material is embedded.Z

V

ðr €uidui þ sijd�ij � f iduiÞdV ¼

Z
S

tidui dS (7)

By adopting Hamilton’s formulations and layerwise displacement fields, the nonlinear, finite element equation
for damped composite shells can be obtained in the following form:

Me €ue þ ðKe � KDT
e þ LeÞue ¼ FDT

e þ Faerodynamic
e (8)

In Eq. (8), Me, Ke, K
DT
e , Le, F

DT
e , and Faerodynamic

e are, respectively, the mass matrix, the linear complex stiffness
matrix, the thermal geometric stiffness matrix, the nonlinear stiffness matrix, the thermal loading vector, and
the external force vector. The detailed derivations of Le were elucidated in prior literature [21]. Through an
assembly procedure, the global finite element equation of composite shells that are subject to a thermal load
and an aerodynamic force can be obtained.

M€uþ ðK� lTK
DT þ LðuÞÞu ¼ lTF

DT þ Faerodynamic (9)

In Eq. (9), KDT , FDT , lT , and Faerodynamic are, respectively, the global thermal geometric complex stiffness, the
global thermal loading vector under a unit-load level of temperature increment, the load level, and the global
aerodynamic force vector. The aerodynamic forces can be calculated by the modified piston theory [19]. By
substituting for these forces in Eq. (9), the final aerothermoelastic equations are obtained as given below:

M€uþ mAm _uþ ðK� lTK
DT þ LðuÞ þ bAb � gAgÞu ¼ lTF

DT (10)

In Eq. (10), b, m, and g are the aerodynamic pressure parameter, the damping parameter, and the radius
coefficient, respectively. Prior to an analysis of the post-buckling behavior, the reference rise in the buckling
temperature is determined by Euler buckling analysis.

ðRe½K� � DTcrK
DT ÞH ¼ 0 (11)

In Eq. (11), DTcr and H are the critical buckling temperature and the buckling mode. The buckled mode
shapes are properly scaled to an initial deflection for the nonlinear stiffness matrix at the post-buckling range.

Provided that the post-buckled structure experiences a small vibration that follows a large buckled
deflection, the aerothermoelastic solution can be represented as the summation of the time-invariant solution
with large deflection, us, and the time-variant solution with small amplitude, ut. By substituting this
summation in Eq. (10), the static and dynamic coupled equations can be obtained as follows:

qðus; lT Þ ¼ ðRe½K� � lTK
DT þRe½LðusÞ� þ bAb � gAgÞus � lTF

DT ¼ 0 (12)

M€ut þ mAm _ut þ ðK� lTK
DT þ LðusÞ þ bAb � gAgÞut ¼ 0 (13)
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In Eq. (12), qðus; lT Þ is the out-of-balance vector. From Eq. (12), the post-buckled deflection, us, arising from a
thermal load, an aerodynamic force, and a restoring force, is calculated using arc-length iterative methods.
Additionally, only the real parts of the complex stiffness matrix are used to estimate the static thermo-
aerodynamic buckled deflection given that the structural damping terms take effect only for dynamic
problems. By substituting the calculated us into Eq. (13), the aerothermoelastic solution can be obtained as the
complex eigenvalues, Lb. The solution varies with the increment of the aerodynamic pressure, and the critical
aerodynamic pressure is b when the imaginary parts of the solutions change from being negative to being
positive. The modal frequencies and loss factors at b are defined as the real and imaginary parts, respectively,
of the complex solution of Eq. (13).

o2
b ¼ Re½Lb�; Zb ¼ Im½Lb�=Re½Lb� (14)
3. Results and discussion

3.1. Post-buckling analysis of composite shells with viscoelastic layers

The variation, with thermal load, of the post-buckling behavior of the cylindrical composite shells with
viscoelastic layers, consisting of 14 graphite/epoxy layers and a viscoelastic layer as shown in Fig. 2, was
investigated. The properties of the materials used for the analyses were as follows.

Graphite/epoxy:

rg ¼ 1570 kg=m3; Eg1 ¼ 119Gpa; Eg2 ¼ 8:67Gpa; Gg12 ¼ Gg13 ¼ 5:18Gpa; Gg23 ¼ 3:9Gpa

ng12 ¼ 0:31; Zg1 ¼ 1:18� 10�3; Zg2 ¼ 6:20� 10�3; Zg12 ¼ Zg13 ¼ 8:12� 10�3; Zg23 ¼ 8:46� 10�3

Viscoelastic layer (ISD 112-3M):

rd ¼ 986:8 kg=m3; Ed ¼ 11:2Mpa; Gd ¼ 3:76Mpa; nd ¼ 0:49; Zd ¼ 1:02

In the finite element models, 8� 8 meshes with nine-node elements were adopted for the in-plane direction,
as were five sub-laminates in the thickness direction. Further, all the edges of the cylindrical shell were
clamped. Prior research has described in detail the validation of this method and the convergence test of mesh
size [22].

Fig. 3 displays the thermal-deformation behavior at the central position of the panels expressed in terms of
the variation of thermal environments. The thermally deformed configuration of the undamped composite
shell with the [04/903]s laminate resembles a plateau, and its central displacement rises smoothly with the
thermal load. In terms of the thermal-deformation behavior, the damped composite shells can be divided into
two groups: A and B. Group A includes the [D/04/903/903/04] and [04/903/903/04/D] laminates, which also have
plateau-shaped geometries. Generally, those laminate sequences are called free layer damping models.
Additionally, the changes of their central deformations with incremental thermal load are similar to that of the
A

b = Rφ
= 0.4 m

B
a = 0.4 m D

φ = 0.4 rad

laminate2. h2

viscoelastic core, hc

laminate1, h1

C

AB : Fixed
AC : Fixed
BD : Fixed
CD : Fixed

Fig. 2. Geometry and construction of the composite shell with a viscoelastic layer.
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Fig. 3. Thermal post-buckling behavior of composite shells with various damping treatments.
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undamped composite shell. Group B contains the [04/D/903/903/04], [04/903/D/903/04], and [04/903/903/D/04]
laminates; Group B is classified into constrained layer damping models. Further, it manifests similar thermal
deformation to Group A, up to the vicinity of DT ¼ 130. However, beyond DT ¼ 130, dramatic changes
occur to the thermally deformed shapes. In particular, the thermal deformation of Group B has two humps,
and the central deformation of the group decreases with the incremental thermal load because of the change in
the deformed shape. Moreover, the closer the viscoelastic layer is embedded to the neutral axis of the shell, the
sharper is the decrease in the central deformation. Since the damping factor cannot affect the static
deformations of shells, this trend may result from the increased in-plane flexibility that is induced by the
relatively low stiffness of the embedded viscoelastic layer.

These results confirm that the in-plane stiffness of the structure can considerably affect its thermal-
deformation behavior. Further, the damping treatments for dynamic stability of the structures may induce
unexpected changes in the thermal characteristics.
3.2. Aerothermoelastic characteristics of damped composite shells

Aerothermoelastic analyses were conducted for the finite element model adopted in the previous section.
Fig. 4(a) indicates the variation, with thermal load, of the critical dynamic pressure of various damped
composite shells. Without the thermal load, the panel flutter of the undamped composite shell occurs at
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b ¼ 3:95� 105. For this shell, the critical dynamic pressure steeply decreases to zero with the augmentation of
the thermal load, and remains zero above DT ¼ 19:7, which means the structure is aeroelastically quite
unstable. The flutter boundaries of Group A improve a little in comparison with that of the undamped shell.
There are a few differences between the [D/04/903/903/04] and [04/903/903/04/D] laminates, but the variations of
their respective flutter boundaries are almost similar to each other. Without the thermal load, the flutter of
Group A occurs at b ¼ 3:99� 105, which is one percent higher than that for the undamped composite shell.
Additionally, the critical dynamic pressure drops to zero above DT ¼ 29:4, which suggests that Group A is
rather aerothermoelastically stable in comparison with the undamped composite shell.

In contrast with the two preceding cases, the critical dynamic pressure of Group B decreases with
rising thermal load up to a certain value, but increases with additional thermal load. This behavior may be
induced by the changes of the thermally buckled shapes, whereby two different flutter modes can exist
at the same dynamic pressure in certain regimes. The variations of the flutter boundaries of the [04/D/903/903/
04] and [04/903/903/D/04] laminates are similar to each other up to the vicinity of DT ¼ 40, but the
differences between the two cases become conspicuous above that point. Without the thermal load,
their flutters occur at b ¼ 5:37� 105 and 5:33� 105, respectively. The results shown in the figures indicate that
the flutter values are about 36 percent greater than that of the undamped composite shell. Additionally, the
critical dynamic pressure of the [04/D/903/903/04] laminate starts to rise above DT ¼ 105:0; in contrast, that of
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[04/903/903/D/04] starts to rise only above DT ¼ 128:8. In the absence of thermal loads, the flutter of the
[04/903/D/903/04] laminate occurs at b ¼ 8:00� 105. Further, of all the shells, this laminate has the largest
critical pressure, resulting in a 102 percent improvement over the undamped composite shell.

These results reveal that damping treatments appreciably improve the flutter boundaries, and that the
nearer the damping layers are buried to the central line of the thickness direction, the stronger are the
aerothermoelastic stabilities. However, due to the differing thicknesses, a direct comparison between
undamped and damped composite shells is rather unfair and misleading. More specifically, damped composite
shells are thicker than undamped shells on account of the embedded viscoelastic layer. Therefore,
nondimensionalization of the critical dynamic pressure is necessary for reasonable comparison between
undamped and damped composite shells. Fig. 4(b) presents the nondimensionalized flutter boundaries of the
various composite shells with reference to the augmentation of the thermal loads. In the absence of thermal
loads, the nondimensionalized, critical dynamic pressures ðb�Þ of the damped composite shells are lower than
that of the undamped shell, except for the [04/903/D/903/04] laminate. However, the flutter boundary of the
undamped composite shell drops steeply as the thermal load increases, and the b*s of all the damped
composite shells are greater than that of the undamped shell above DT ¼ 20:0. It is difficult to definitively
confirm that damping treatments improve the aeroelastic stabilities of general shell structures. However, from
previous results, it can be conservatively asserted that the embedded viscoelastic layers might reduce the falls
in the flutter boundaries that are induced by thermal loads.
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To investigate in more detail the upswings in the flutter boundaries of group B following changes in the
thermally deformed shapes, the histories of the two different flutters that correspond to the same b� were
examined for the solid marks (m, ., ~) indicated in Fig. 4(b). Figs. 5 and 6 depict the flutter histories of the
[04/D/903/903/04] laminate with respect to increments of b� both before and after the change of the deformed
shape (m). Fig. 5(a) indicates the five lowest natural frequencies and the central aerothermal deformations of
the shell laminate at DT ¼ 75:4. All the natural frequencies lie in the range [200, 360Hz], and smoothly
increase with b�. Their mode shapes are observed as C3L1, C2L1, C3L2, C4L2, and C3L3, respectively, where
Cn and Lm refer to the numbers of circumferential and longitudinal waves, respectively. A plateau-shaped
deformation that arises from the aero-thermal loads is also observed. The deflection of the central point
decreases slowly with increments of b�. Fig. 5(b) reveals the five lowest modal loss factors, which are all
smaller than 1, and decrease with increasing b�. The loss factor of the first mode becomes negative at b� ¼ 224
as the first and second modes are coalescent; this implies the occurrence of the panel flutter. Fig. 6(a) also
shows the natural frequencies and the central deformations at DT ¼ 145:4. The natural frequencies lie in the
range [140, 280Hz] and, except for the fifth mode, steadily increase with increments of b�. The mode shapes
are C3L4, C4L3, C3L3, C4L4, and C3L5, respectively. Complex mode changes among the five lowest modes
are observed in the vicinity of the flutter boundary. A deformation with two humps is induced by the
aerothermal load, and its magnitude is almost twice as big as that in Fig. 5(a) because of the difference in the
thermal loads. Further, the peak heights of the two humps smoothly reduce with increasing b�. Fig. 6(b)
0

-2

-1

0

1

2

Flutter boundary

At ΔT = 129.9°C, [04/903/D/903/04] laminate 

 1st mode damping
 2nd mode damping
 3rd mode damping
 4th mode damping
 5th mode damping

M
od

al
 L

os
s 

Fa
ct

or
 

Nondimensionalized dynamic pressure (β∗)
100 200 300 400 500 600

β* = 286

At ΔT = 129.9°C, [04/903/D/903/04] laminate 

250

300

200

150

100

50

0 0.0

0.4

0.8

1.2

1.6

2.0

2.4

0 100 200 300
Nondimensionalized dynamic pressure (β*)

N
at

ur
al

 F
re

qu
en

cy
 (H

z)

S
ta

tic
 D

ef
or

m
at

io
n 

at
 th

e 
ce

nt
er

 (m
m

)

400 500 600

deformation at center
1st mode frequency
2nd mode frequency
3rd mode frequency
4th mode frequency
5th mode frequency

Fig. 8. Flutter history of the [04/903/D/903/04] laminate at DT ¼ 129.9 1C: (a) Natural frequencies and aerothermoelastic deformation at

the center and (b) modal loss factors.



ARTICLE IN PRESS
W.-H. Shin et al. / Journal of Sound and Vibration 324 (2009) 556–569566
indicates the five lowest modal loss factors, which are larger than those of Fig. 5(b). The loss factor of the first
mode becomes negative at b� ¼ 224 because of the coalescence between the first and second modes, and stays
negative until the critical dynamic pressure for DT ¼ 95:4. These results clarify that in contrast to the modal
frequencies, the modal loss factors for DT ¼ 145:4 are higher than those for DT ¼ 95:4. The improvement in
the modal loss factors seems to cause the flutter boundaries to upswing after the change of the thermally
deformed shape in Fig. 4. The increments of the modal loss factors result from the sudden increment of KDT ,
due to the altered geometry of the deformed shape. As presented in Eq. (14), the modal loss factors are defined
as the ratios between the real and imaginary parts of the complex eigenvalues. The geometric nonlinear
stiffness, L, increases both the real and imaginary terms, and KDT reduces only the real parts of Eq. (13) with
increasing DT . Consequently, the modal frequencies drop due to the decrease of the real parts of the complex
eigenvalues, and the modal loss factors increase in as much as the imaginary parts increase and the real
parts decrease.

Figs. 7 and 8 indicate the flutter histories of the [04/903/D/903/04] laminate with respect to increments of b�

both below and above the inflection of the flutter boundaries (.). Fig. 7(a) denotes the five lowest natural
frequencies and the central aerothermal deformations of the shell laminate at DT ¼ 100:6. All the natural
frequencies lie in the range, [170, 300Hz], and steadily increase with b�. In addition, their mode shapes are
obtained as C3L1, C4L1, C3L2, C4L2, and C4L3, respectively. A plateau-shaped deformation induced by the
aero-thermal loads is obtained, and its deflection at the central point decreases slowly with increasing b�.
Fig. 7(b) shows the five lowest modal loss factors with magnitudes smaller than 1; these factors reduce with
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increments of b�. The loss factor of the first mode becomes negative at b� ¼ 288, and determines the flutter
boundary. Fig. 8(a) presents the natural frequencies and central deformations at DT ¼ 129:9. The natural
frequencies lie between 150 and 280Hz. They increase smoothly with b�, and the mode shapes are observed as
C3L2, C4L3, C3L3, C3L20, and C4L2, respectively. The first and fourth modes have the same modal
wavenumber, but differ with respect to the phase. A thermally deformed shape similar to the one at DT ¼

100:6 is observed, implying that the changes of the deformed shape have not yet occurred. Fig. 8(b) denotes
the five lowest modal loss factors with higher magnitudes compared with those of Fig. 7(b). The loss factor of
the first mode is negative at b� ¼ 286, similar to the flutter boundary for DT ¼ 100:6. Though the deformed
shapes are not altered, an upswing of the flutter boundaries is observed. These results indicate that with
increasing thermal loads, the flutter boundaries rapidly decrease at first because of the increment of KDT .
Subsequently, the curve of the flutter boundary flattens before rising because of the increasing nonlinear
stiffness, L. Finally, the increment of flutter boundaries is accelerated given the changes of the thermally
deformed shape.

Figs. 9 and 10 show the flutter histories of the [04/903/903/D/04] laminate against increments of b� both
before and after the change of the deformed shape (~). Fig. 9(a) presents the five lowest natural frequencies
with mode shapes as C3L1, C2L1, C3L2, C4L2, and C3L3, and the plateau-shaped, central aerothermal
deformations at DT ¼ 93:0. Fig. 9(b) indicates the five lowest modal loss factors, and the flutter occurs at
b� ¼ 196 in the first mode. Fig. 10(a) also depicts the five lowest natural frequencies with mode shapes as
C3L2, C3L20, C2L1, C3L3, and C4L2, and the central aerothermal deformations with a two-humped shape at
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DT ¼ 149:9. Fig. 10(b) presents the five lowest modal loss factors, and the flutter occurs at b� ¼ 198 in the first
mode. The behaviors of the aerodynamic and thermal-deformation characteristics with increasing b� are
similar to those of the [04/D/903/903/04] laminate.

4. Conclusion

Using the layerwise finite element method, aerothermoelastic static and dynamic stabilities of cylindrical
composite shells with embedded viscoelastic layers were investigated in this study. The aerothermally
nonlinear deformations and aerothermoelastic flutter boundaries of various damped composite shells with
different damping treatments such as free, constrained and sandwiched viscoelastic layers were investigated by
varying the thermal loading. Present results clarify that the laminate sequences with viscoelastic and
constrained layers may remarkably affect the aerothermally deformed shape, and that the deformed shapes
can influence the flutter boundaries of damped composite shells. Additionally, the results reveal that the
nonlinear stiffness that is induced by transverse large deformations can improve the aerothermoelastic
characteristics of the damped composite shells above the high temperature region. Further, the proper
damping treatments, which are highly coupled with aerothermal loads, can improve aerothermoelastic
characteristics, resulting in the increase of the flutter boundary of the cylindrical composite panels.
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